5 Die technische Auslegung der Förderkette

5.1 Berechnungsgrößen

Benennung	Formel- zeichen	Einheit	Benennung	Formel- zeichen	Einheit
Gesamtkettenzugkraft	F	N	Füllgrad	φ	
Kettenumfangszugkraft gesamt	F_g	N	Reibungskoeffizient zw. Buchse u. Laufrolle	μ_3	
Kettenumfangszugkraft pro Kettenstrang	Fi	N	Durchhang des Leertrums	f	m
Kettenstützzugkraft (durchhangsabhängig)	F _s	N	Reibungskoeffizient (Fördermaterial zu Stahl)	μ_4	
Kettenfliehzugkraft	F_f	N	Abstand des Stückgutes	I_s	m
Kettenvorspannkraft	F_{v}	N	Rollwiderstandskoeffizient	μ_2	
Kettenbruchkraft	F_b	N	Kettengeschwindigkeit	٧	m/s
Anzahl Kettenstränge	i		Gleitreibungskoeffizient	μ_1	
Förderhöhe	Н	m	Gelenkfläche der Kette	A_{K}	cm²
Förderlänge, horizontal	В	m	Abstand des Durchhangs	a_d	m
Achsabstand	а	m	Sicherheitsfaktor	k	
Steigungswinkel des Förderers	α	° (Grad)	Kettenlänge vom durch- hängenden Leertrum	I _d	m
Masse der Kette pro m Kette	M_{K}	kg/m	Gelenkflächenpressung, effektiv	P_{eff}	N/mm²
Masse des Fördergutes pro m Kette	M_F	kg/m	Gelenkflächenpressung, zulässig	P_{zul}	N/mm²
Förderkapazität (Stück)	Q_S	St/h	Kettenteilung	р	m
Förderkapazität (Masse)	Q_M	t/h	Winkelgeschwindigkeit	ω	S ⁻¹
Förderrinnenbreite	b	m	Zähnezahl	Z	
Förderrinnenhöhe	h	m	Teilkreisdurchmesser	d_0	m
Querschnittsfläche des Förderers	A_{M}	m²	Motorleistung des Antriebes	Р	kW
Schüttmasse des Fördergutes	γ	t/m³	Wirkungsgrad des Antriebes	η	

5.2 Typ der Transportanlage

Die Transportanlagen werden in zwei Hauptkategorien eingeteilt:

- · gleitende Förderketten
- rollende F\u00f6rderketten

Weiter ist zu unterscheiden zwischen folgenden Anordnungen:

- horizontale Förderung
- · schräge Förderung
- · vertikale Förderung
- · kombinierte Förderung

5.3 Gesamtmasse des Fördergutes

Darunter versteht man die auf den Transportketten bzw. eventuellen Tragelementen (Platten, Querträgern, Traversen, Scharnierbänder, usw.) lastende und zu bewegende gesamte Masse des Fördergutes.

Entsprechend der Lastverteilung auf der Förderkette ist zwischen Punkt-, Einzel- und Streckenbelastung zu unterscheiden. Bei der Auslegung der Förderkette müssen bei einer konzentrierten Last auf einer reduzierten Fläche der Kettenbolzen und die Laufrollen zusätzlich auf Biegung bzw. Pressung nachgerechnet werden.

5.4 Belastbarkeit der Laufrollen

Die Belastbarkeit der Laufrollen ist vom Laufrollenwerkstoff, von der Lagerungsart, von der Kettengeschwindigkeit, von der Temperatur und von der Schmierung abhängig. Für oberflächengehärtete Laufrollen aus Stahl sind bei geringer Kettengeschwindigkeit (< 0,25 m/s) und ausreichender Flächenpressung, bis 800 N/cm² zulässig.

Laufrollen aus vergütetem oder ungehärtetem Stahl, aus Grauguss oder aus Kunststoff besitzen geringere zulässige Lagerpressungen (vgl. nachfolgende Tabellen).

Vorteile von Laufrollen aus Kunststoff sind:

- · Wartungsfreiheit
- Leichtbau
- · geräuscharmer Lauf
- · weitgehende chemische Beständigkeit.

Weiterhin ist es möglich, die Gleiteigenschaften der Laufrollen durch Lagerbuchsen zu verbessern. Geeignete Lagermaterialien sind bleihaltige Zinnbronzen (Flächenpressungen bis 300 N/cm²), aber auch spezielle Lagerwerkstoffe für einen wartungsarmen Betrieb.

In den folgenden Tabellen 3a und b sind zulässige Rollenbelastungen für Förderketten nach DIN 8165 und nach DIN 8167 aufgeführt, die gemäß der angegebenen Formel mit den entsprechenden Korrekturfaktoren aus den Tabellen 4 bis 8 zu multiplizieren sind:

Zulässige Belastbarkeit der Laufrolle = Tabellenwert · f₁ · f₂ · f₃ · f₄ · f₅

Kette nach DIN 8165	Werkstoffpaarung Buchse/Rolle C15E/C15E	Kette nach DIN 8167	Werkstoffpaarung Buchse/Rolle C15E/C15E
	C15E/9SMn28E		C15E/9SMn28E
FVT 40	2000	MT 20	1050
FVT 63	3000	MT 28	1350
FVT 90	3800	MT 40	1900
FVT 112	5100	MT 56	2750
FVT 140	7050	MT 80	3850
FVT 180	10550	MT 112	5200
FVT 250	15550	MT 160	7200
FVT 315	21500	MT 224	10050
FVT 400	23900	MT 315	13500
FVT 500	31200	MT 450	18450
FVT 630	39400	MT 630	26000
		MT 900	36450

Tab. 3: Belastbarkeit der Laufrollen (N/Rolle) für Rollentragketten nach DIN 8165 und DIN 8167

Rollenart	f ₁	(Buchse aus Einsatzstahl	gehärtet)	f ₂
Laufrolle Bundlaufrolle	1,0 0,9	Einsatzstahl gehärtet Rostfreier Stahl gehärtet Rostfreier Stahl ungehärtet Standardstahl ungehärtet Grauguss	t	1,00 0,60 0,30 0,20 0,12
Tab. 4: Faktor f ₁ : Rollenart Tab 5: Faktor f ₂ : Rollenmaterial				
Schmierungsverhältnisse f ₃				
ausreichende Schmierung, ohne Schmutz oder rauen Einsatz 1,0 mangelhafte Schmierung, ohne Schmutz oder rauen Einsatz 0,4 - 0,6 ohne Schmierung, mit viel Schmutz und rauem Einsatz 0,2 - 0,35				0,6

Tab. 6: Faktor f₃: Schmierung

Kettengeschwindigkeit in m/s	f ₄	Temperatur in °C	f ₅
0,10	1,15	20 - 200	1,00
0,25 0,50	1,00 0,85	200 - 260 260 - 285	0,50 0,25
1,00	0,50	285 - 300	0,15

Tab. 7: Faktor f_4 : Kettengeschwindigkeit Tab 8: Faktor f_5 : Temperatur

Werksto	offpaarung	Max. spezifische
Rolle	Buchse	Lagerpressung in N/cm²
Einsatzstahl gehärtet Vergütungsstahl vergütet Stahl ungehärtet Grauguss Bronze	Einsatzstahl gehärtet """ """ """"	800 300 160 100 300
Polyamid 6	" "	50

Tab. 9: Zulässige Höchstwerte der spezifischen Pressung

5.5 Reibungskoeffizienten

5.5.1 Gleitende Reibung der Ketten auf Unterlage im Dauerbetrieb

	μ_1		
Werkstoff der Gleitschiene	mangelhafte Schmierung	gute Schmierung	
Stahl Kunststoff Hartholz	0,35 0,20 0,30	0,25 0,15 0,25	

Tab. 10: Gleitreibungskoeffizient μ_1

5.5.2 Rollende Reibung der Ketten auf Stahlführungen

Rollwiderstandskoeffizient $\mu_2 = \frac{2 \cdot c + \mu_3 \cdot d_3}{d_5}$	μ ₂ = 0,08 <u>0,12</u> 0,18
--	--

 d_3 = Buchsendurchmesser [mm] d_5 = Rollendurchmesser [mm] c = experimenteller Koeffizient,

abhängig vom Werkstoff und der Oberflächenrauhigkeit der Kontaktflächen

Führungsverhältnisse c

- 0,5 Stahlrolle auf Stahlführung mit glatter Oberfläche
- 0,6 Mittelwert
- 1,0 Stahlrolle auf Stahlführung bei rauer Oberfläche

Tab. 11: Koeffizient c in Abhängigkeit von Werkstoff und Kontaktoberfläche

Workstoffngarung	μ_3		
Werkstoffpaarung Rolle/Buchse	mangelhafte Schmierung	gute Schmierung	
Stahlrolle auf Stahlbuchse	0,30	0,20	
Rolle mit Bronzebuchse auf Stahlbuchse	-	0,15	
Rolle aus PA6 auf Stahlbuchse	0,15	0,10	
Rolle mit Wälzlager auf Stahlbuchse	0,03	0,015 0,005	

Tab. 12: Reibungskoeffizient zwischen Rolle und Buchse μ_{3}

5.5.3 Reibungskoeffizient Fördergut zu Stahl μ_4 , Schüttgewicht γ und Füllgrad ϕ

Asche 0,85 0,50 0,70 Erz 1,20 2,25 0,60 Getreide 0,50 0,65 0,80 Holzspäne 0,80 0,25 0,75 Kies 1,00 1,75 0,65 Kohle 0,90 0,80 0,50 Koks 1,00 0,45 0,60 Lehm 0,75 1,25 0,70 Mehl 0,50 0,60 0,70 Sand 0,80 1,55 0,60	Art des Fördergutes	Reibungs-koeffizient μ_4	Schüttgewicht γ in t/m³	Füllgrad φ
Schotter 0,65 1,80 0,65 Torf 0,70 0,40 0,80 Zement 0,65 1,20 0,70	Asche Erz Getreide Holzspäne Kies Kohle Koks Lehm Mehl Sand Schotter	1,20 0,50 0,80 1,00 0,90 1,00 0,75 0,50 0,80 0,65 0,70	0,50 2,25 0,65 0,25 1,75 0,80 0,45 1,25 0,60 1,55 1,80 0,40	0,70 0,60 0,80 0,75 0,65 0,50 0,60 0,70 0,70 0,60 0,65 0,80

Tab. 13: Reibungskoeffizient Fördergut/Stahl, Schüttgewicht und Füllgrad

5.6 Berechnung der Gesamtkettenzugkraft F

Die Gesamtkettenzugkraft einer Kette F ergibt sich aus der Summe von Gesamtumfangszugkraft F_a , Kettenstützzugkraft F_s und Kettenfliehzugkraft F_f .

$$F = F_q + F_s + F_f$$

5.6.1 Kettenstützzugkraft F_s

Die Kettenstützzugkraft entsteht bei freiem Durchhang der Kette und ist abhängig von der Eigenmasse der Kette und der Kettenlänge des durchhängenden Leertrums.

$$F_s = \frac{M_K \cdot 9.81 \cdot a_d^2}{8 \cdot f} \cdot \sqrt{1 + 16 \cdot \frac{f^2}{a_d^2}}$$

wobei der Durchhang f aus folgender Gleichung ermittelt wird:

$$f = \sqrt{0.375 \cdot a_d \cdot (I_d - a_d)}$$
 (f sollte $\approx 10\%$ von a_d gewählt werden)

5.6.2 Kettenfliehzugkraft F_f

Die Kettenfliehzugkraft ist eine von der Kettengeschwindigkeit v und vom Kettenraddurchmesser abhängende Zugkraft, die, als Komponente der Gesamtzugkraft der Kette, vor allem bei höheren Kettengeschwindigkeiten zu berücksichtigen ist.

$$F_f \, = M_K \! \cdot v^2$$

wobei gilt: $v = \omega \cdot \frac{d_0}{2}$; $\omega = 2 \cdot p \cdot n$ (n = Drehzahl des Kettenrades in s⁻¹)

5.6.3 Kettenumfangszugkraft F_q

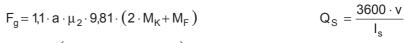
Die Umfangszugkraft (Nutzkraft) resultiert aus dem zu übertragenden betriebsbelastungsabhängigen Drehmoment des Kettentriebes. Nachstehend finden sich, in Abhängigkeit vom Typ der Förderanlage, einige Berechnungsformeln zur Ermittlung der Gesamtumfangszugkraft F_g . Bei Förderanlagen aus mehreren Kettensträngen ergibt sich die Kettenumfangszugkraft pro Strang F_i aus der Beziehung:

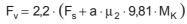
$$F_i = \frac{F_g}{i}$$

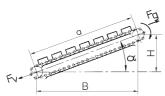
Gleitende Reibung

$$F_g = 1.1 \cdot a \cdot \mu_1 \cdot 9.81 \cdot \left(2 \cdot M_K + M_F\right)$$

$$Q_S = \frac{3600 \cdot v}{I_s}$$


$$F_v = 2.2 \cdot \left(F_s + a \cdot \mu_1 \cdot 9.81 \cdot M_K\right)$$

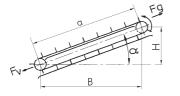

$$\begin{split} F_g &= 1,\!1 \cdot a \cdot 9,\!81 \cdot \left[\left(M_K \! + \! M_F \right) \cdot \left(\mu_1 \! \cdot \! \cos \alpha + \sin \alpha \right) + M_K \! \cdot \left(\mu_1 \! \cdot \! \cos \alpha - \sin \alpha \right) \right] \\ wenn & \left(\mu_1 \! \cdot \! \cos \alpha - \sin \alpha \right) \! < 0 : \\ F_g &= 1,\!1 \cdot a \cdot 9,\!81 \cdot \left(M_K \! + \! M_F \right) \cdot \left(\mu_1 \! \cdot \! \cos \alpha + \sin \alpha \right) \end{split}$$


$$\begin{split} F_v &= 2.2 \cdot F_s \quad ... \quad \text{wenn} \quad H/B > \mu_1 \\ F_v &= 2.2 \cdot \left[F_s + 9.81 \cdot M_K \cdot \left(B \cdot \mu_1 - H \right) \right] \quad ... \quad \text{wenn} \quad H/B < \mu_1 \end{split}$$

Rollende Reibung



$$\begin{split} F_g &= 1.1 \cdot a \cdot 9.81 \cdot \left[\left(M_K + M_F \right) \cdot \left(\mu_2 \cdot \cos \alpha + \sin \alpha \right) + M_K \cdot \left(\mu_2 \cdot \cos \alpha - \sin \alpha \right) \right] \\ wenn &\quad \left(\mu_2 \cdot \cos \alpha - \sin \alpha \right) < 0 : \\ F_g &= 1.1 \cdot a \cdot 9.81 \cdot \left(M_K + M_F \right) \cdot \left(\mu_2 \cdot \cos \alpha + \sin \alpha \right) \end{split}$$


$$\begin{split} F_v &= 2.2 \cdot F_s & ... & wenn & H/B > \mu_2 \\ F_v &= 2.2 \cdot \left[F_s + 9.81 \cdot M_K \cdot \left(B \cdot \mu_2 - H \right) \right] & ... & wenn & H/B < \mu_2 \end{split}$$

Trogkettenförderer

$$\begin{aligned} F_g &= 1,1 \cdot a \cdot 9,81 \cdot \left(2 \cdot M_K \cdot \mu_1 + \frac{Q_M}{3,6 \cdot V} \cdot \mu_4 \right) \\ F_v &= 2,2 \cdot \left(F_s + a \cdot \mu_1 \cdot 9,81 \cdot M_K \right) \end{aligned}$$

$$F_g = 1.1 \cdot a \cdot 9.81 \cdot \begin{bmatrix} M_K \cdot \left(\mu_1 \cdot \cos \alpha + \sin \alpha \right) + \frac{Q_M}{3.6 \cdot v} \cdot \left(\mu_4 \cdot \cos \alpha + \sin \alpha \right) + \\ M_K \cdot \left(\mu_2 \cdot \cos \alpha - \sin \alpha \right) \end{bmatrix}$$

$$\begin{split} &\text{wenn} \quad \left(\mu_1 \cdot \cos \alpha - \sin \alpha\right) < 0 : \\ &F_g = 1, 1 \cdot a \cdot 9, 81 \cdot \left\lceil \left. M_K \cdot \left(\mu_1 \cdot \cos \alpha + \sin \alpha\right) + \frac{Q_M}{3.6 \cdot v} \cdot \left(\mu_4 \cdot \cos \alpha + \sin \alpha\right) \right\rceil \end{split}$$

$$\begin{split} F_v &= 2.2 \cdot F_s \quad ... \quad \text{wenn} \quad H/B > \mu_1 \\ F_v &= 2.2 \cdot \left[F_s + 9.81 \cdot M_K \cdot \left(B \cdot \mu_1 - H \right) \right] \quad ... \quad \text{wenn} \quad H/B < \mu_1 \end{split}$$

5.7 Ermittlung der notwendigen Kettenbruchkraft F_b

$$F_b = k \cdot F_i$$

Sicherheitsfaktor k $k = 5 \dots \underline{7} \dots 12$

Der Sicherheitsfaktor k ist vor allem abhängig von den Betriebsbedingungen und der Zähnezahl des Kettenrades. Im Allgemeinen liegt k bei 6 bis 7.

5.8 Ermittlung der Antriebsleistung P

$$P = \frac{F \cdot v}{1000 \cdot \eta} \quad ; \quad \text{mit } \eta = 0.75 \dots \underline{0.8} \dots 0.9$$

5.9 Ermittlung der Gelenkflächenpressung P_{eff}

$$P_{\text{eff}} = \frac{F}{A_{K}}$$

Diagramm für P_{zul}

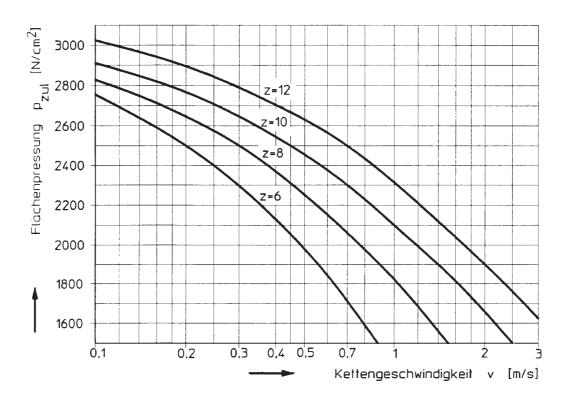


Abb. 7: Gelenkflächenpressung

5.10 Berechnungsbeispiele

Beispiel 1: Trogförderer, horizontal

Fördergut : Holzspäne
Förderstrecke : 40 m
Förderkapazität : 25 t/h
Förderrinnenbreite : 400 mm
Förderrinnenhöhe : 300 mm
Anzahl der Kettenstränge : 1

Anzahl der Kettenstränge : 1 Zähnezahl des Kettenrades : 8

a) Ermittlung der Kettengeschwindigkeit

$$\begin{array}{lll} Q_{M} = 3600 \cdot v \cdot A_{M} \cdot \gamma & A_{M} = b \cdot h \cdot \phi & Q_{M} = 25 \rlap{/}_{h} \\ v = \frac{Q_{M}}{3600 \cdot A_{M} \cdot \gamma} & A_{M} = 0.4 \cdot 0.3 \cdot 0.75 & \gamma = 0.25 \text{ (siehe Abschnitt 4.5.3)} \\ V = \frac{25}{3600 \cdot 0.09 \cdot 0.25} = 0.31 \rlap{/}_{s} & b = 0.4 \rlap{/}_{m} \\ v = 0.3 \rlap{/}_{m} & b = 0.3 \rlap{/}_{m} \end{array}$$

b) Ermittlung der Kettenzugkraft

$$\begin{split} F_g &= 1{,}1\cdot a\cdot 9{,}81\cdot \left(\begin{array}{c} 2\cdot M_K\cdot \mu_1 + \frac{Q_M}{3{,}6\cdot v}\cdot \mu_4 \\ \end{array}\right) & a = 40 \text{ m} \\ M_K &= 8 \frac{kg}{m} \\ F_g &= 1{,}1\cdot 40\cdot 9{,}81\cdot \left(\begin{array}{c} 2\cdot 8\cdot 0{,}35 + \frac{25}{3{,}6\cdot 0{,}31}\cdot 0{,}8 \\ \end{array}\right) & \mu_1 &= 0{,}35 \text{ (siehe Abschnitt 4.5.1)} \\ \mu_4 &= 0{,}8 \text{ (siehe Abschnitt 4.5.3)} \\ i &= 1 \\ k &= 7 \end{split}$$

$$F_i = \frac{F_g}{i} = \frac{10150}{1} = F$$
 (F_s und F_f vernachlässigbar)

$$F_b = k \cdot F = 7 \cdot 10150 = 71050 \text{ N}$$

1. Annahme: Auswahl der Trogförderkette TF90 nach Tabelle Seite 50 Normteilung: p = 125 mm

c) Nachrechnung der Kette auf Gelenkflächenpressung

$$P_{eff} = \frac{F}{A_K} \le P_{zul}$$

$$F = 10150 \text{ N}$$

$$A_K = 5 \text{ cm}^2 \qquad \text{(siehe Tabelle Seite 50)}$$

$$P_{zul} = 2500 \frac{N}{cm^2} \text{ (siehe Abschnitt 4.9)}$$

$$P_{eff} = \frac{10150}{5} = 2030 \frac{N}{cm^2} < 2500 \frac{N}{cm^2}$$

Kettengröße TF90 richtig gewählt!

Beispiel 1: Trogförderer, horizontal - Fortsetzung

d) Bestimmung der Kettenvorspannkraft (Federvorspannung)

$$F_v = 2.2 \cdot (F_s + a \cdot \mu_1 \cdot 9.81 \cdot M_K)$$
 $F_s = 0$ (da das Leertrum abgestützt ist)

$$a = 40$$

$$F_v = 2.2 \cdot (0 + 40 \cdot 0.35 \cdot 9.81 \cdot 8)$$
 $M_K = 8 \frac{\text{kg}}{\text{m}}$

$$F_{v} =$$
 2420 N $\mu_{1} =$ 0,35 (siehe Abschnitt 4.5.1)

e) Erforderliche Antriebsleistung

$$P = \frac{F \cdot v}{1000 \cdot \eta}$$

$$P = \frac{10150 \cdot 0.31}{1000 \cdot 0.8} = \frac{3.9 \text{ kW}}{1000 \cdot 0.8}$$

$$F = 10150 \text{ N}$$

$$v = 0.31 \text{ m/s}$$

$$\eta = 0.8$$

Beispiel 2: Palettentransport

Fördergut : Paletten Förderstrecke : 30 m

Palettengröße : Länge: 1200 mm, Breite: 800 mm

Gesamtmasse pro Palette : 600 kg
Anzahl der Kettenstränge : 2
Kettengeschwindigkeit : 0,2 m/s
Zähnezahl des Kettenrades : 10
max. Anzahl der Paletten : 20 Stück

gewählter Kettentyp : Rollentragkette nach DIN 8165

a) Ermittlung der Kettenzugkraft

$$\begin{split} F_g &= 1.1 \cdot a \cdot \mu_2 \cdot 9.81 \cdot \left(2 \cdot M_K + M_F\right) \\ F_g &= 1.1 \cdot 30 \cdot 0.12 \cdot 9.81 \cdot \left(2 \cdot 11 + 400\right) \\ F_g &= \underbrace{16400 \ N}_{K} \\ \end{split}$$

$$F_{i} = \frac{F_{g}}{i} = \frac{16400}{2} = \underbrace{8200 \ N}_{M_{F}} = \underbrace{\frac{20 \ St \cdot 600 \ ^{kg}}{St}}_{30 \ m}$$

$$F_{b} = k \cdot F_{i}$$
 30 m
 $M_{F} = 400 \frac{kg}{m}$ $K = 7$

Auswahl der Kette FVT 63, mit einer Mindestbruchlast von 63 kN (siehe Tabelle Seite 44)

Beispiel 2: Palettentransport - Fortsetzung

b) Nachrechnung der Kette auf Gelenkflächenpressung

$$P_{eff} = \frac{F_i}{A_K} \le P_{zul}$$

$$F_i\,=8200\,\,N$$

$$A_{K} = 3.7 \, \text{cm}^{2}$$

 $A_{\kappa} = 3.7 \,\text{cm}^2$ (siehe Tabelle Seite 44 und 45)

$$P_{eff} = \frac{8200}{3.7} = \frac{2220 \text{ N/cm}^2}{\text{cm}^2} \le 2780 \text{ N/cm}^2$$

$$P_{zul} = 2780 \text{ N/cm}^2 \text{ (siehe Abschnitt 4.9)}$$

c) Nachrechnung der Laufrollenbelastung

Anzahl der tragenden Rollen 4 Stück : 100 mm Kettenteilung Palettenmasse : 600 kg

$$= \frac{600 \cdot 9.81}{4} = 1472 \frac{N}{Rolle} \approx 1500 \frac{N}{Rolle}$$

: siehe Abschnitt 4.4

: 3000 $\frac{N}{Rolle} \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5$

- Einsatzstahl, gehärtet

f₂: 1,0

- mangelhafte Schmierung, ohne Schmutz oder rauen Einsatz

f₃: 0,4...0,6

- Kettengeschwindigkeit = 0,2 m/s

f₄: 1,0

- Raumtemperatur 10 - 25 °C

 $f_5:1,0$

zul. Rollenbelastung = 3000
$$\frac{N}{Rolle} \cdot 1,0 \cdot 1,0 \cdot 0,4 \cdot 1,0 \cdot 1,0 = 1200 \frac{N}{Rolle}$$

In Abhängigkeit von der Schmierung der Kette (Faktor f₃) kann die zulässige Rollenbelastung überschritten werden. Es ist daher sinnvoller, die nächstgrößere Kette auszuwählen. FVT 90

d) Erforderliche Antriebsleistung

$$P = \frac{F_g \cdot v}{1000 \cdot \eta}$$

$$P = \frac{16400 \cdot 0.2}{1000 \cdot 0.8} = \frac{4.1 \text{ kW}}{2000 \cdot 0.8}$$

$$F_g = 16400 \ N$$

$$v = 0.2 \text{ m/s}$$

$$\eta = 0.8$$